Ad Code

Lecture Notes of MTH101



Lecture Notes of MTH101
Lecture 1
 The Real Number System
Lecture 2
 Convergence of a Sequence, Monotone Sequences
Lecture 3
 Cauchy Criterion, Bolzano - Weierstrass Theorem
Lecture 4
 Continuity and Limits
Lecture 5
 Existence of Maxima, Intermediate Value Property, Differentiabilty
Lecture 6
 Rolle's Theorem, Mean Value Theorem
Lecture 7
 Cauchy Mean Value Theorem, L'Hospital Rule
Lecture 8
 Fixed Point Iteration Method, Newton's Method
Lecture 9
 Sufficient Conditions for Local Maximum, Point of Inflection
Lecture 10
 Taylor's Theorem
Lecture 11-13
 Infinite Series, Convergence Tests, Leibniz's Theorem
Lecture 14
 Power Series, Taylor Series
 Lecture 15 - 16
 Riemann Integration
 Lecture 17
 Fundamental Theorems of Calculus, Riemann Sum
 Lecture 18
 Improper Integrals

 Uniform Continuity (Not for Examination)
 Lecture 19
Area Between Two Curves; Polar Coordinates
 Lecture 20
Area in Polar Coordinates,Volume of Solids
 Lecture 21
Washer and Shell Methods, Length of a plane curve
 Lecture 22
 Areas of Surfaces of Revolution; Pappus's Theorems
 Lecture 23
 Review of vectors, equations of lines and planes; sequences in R^3
 Lecture 24
 Calculus of Vector Valued Functions
 Lecture 25
 Principal Normal; Curvature
 Lecture 26 -27
 Functions of Several Variables : Continuity and Differentiability
 Lecture 28
 Directional Derivatives, Gradient, Tangent Plane
 Lecture 29
 Mixed derivative Theorem, MVT, Extended MVT
 Lecture 30
 Maxima, Minima, Second Derivative Test
 Lecture 31
 Lagrange Multiplier Method
 Lecture 32
 Double integrals
 Lecture 33
 Change of Variable in a Double Integral, Triple Integrals
 Lecture 34
 Change of Variables in a Triple Integral, Area of a Parametric Surface
 Lecture 35
 Surface Area, Surface Integrals
 Lecture 36
 Line Integrals, Green's Theorem
 Lecture 37
 Green's Theorem (contd.), curl, Divergence
 Lecture 38
  Stokes' Theorem
 Lecture 39
  The Divergence Theorem


Post a Comment

0 Comments

Close Menu